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The paper deals with approaches to explicit aspect extraction from user 
reviews of restaurants and sentiment classification of Twitter messages 
of telecommunication companies based on fragment rules. This paper 
presents fragment rule model to sentiment classification and explicit aspect 
extraction. Rules may be constructed manually by experts and automati-
cally by using machine learning procedures. We propose machine learn-
ing algorithm for sentiment classification which uses terms that are made 
by fragment rules and some rule based techniques to explicit aspect ex-
traction including a method based on filtration rule generation. The article 
presents the results of experiments on a test set for twitter sentiment clas-
sification of telecommunication companies and explicit aspect extraction 
from user review of restaurant. The paper compares the proposed algo-
rithms with baseline and the best algorithm to track. Training sets, evalu-
ation metrics and experiments are used according to SentiRuEval. As our 
future work, we can point out such directions as: applying semi-supervised 
methods for rule generation to reduce the labor cost, using active learning 
methods, constructing a visualization system for rule generation, which can 
provide the interaction process with experts.
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1.	 Introduction

Opinion mining and sentiment extraction is an actively developing sub discipline 
of data mining and computational linguistics. A promising approach to automatic sen-
timent extraction is based on extraction of specific product features — aspects and 
on the determination of those polarities. Usually the problem is solved in three stages. 
At first aspects and those polarities are extracted. Then aspects gears to categories 
if they are predefined. Otherwise a set of aspects is clustered and representative 
aspects are selected. The final stage includes category polarity classification based 
on polarities of individual aspects.

In this paper we present a rule-based approach which exploits fragment rule 
model to explicit aspect extraction from user reviews and to sentiment classification 
of twitter messages. The main advantage of the approach is its good interpretability. 
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On the one hand, there is an opportunity to use expert knowledge in the model 
by means of constructing rules manually. On the other side, you can build the model 
automatically or get the interpretable model within a procedure, which includes inter-
action of an expert and a system.

In paper [7] approaches to sentiment classification of movie reviews are de-
scribed. These approaches based on counting the number of the proposed positive 
and negative words and using Naive Bayesian classifier, maximum entropy classifica-
tion, support vector machine. Using support vector machine raises accuracy to 82%. 
Another two methods of classification gives accuracy 75–80%. In paper [1] twitter 
sentiment classification based on support vector machine is described. The words, 
phrases and part of speech are used as features. The results shown in this paper are 
the same as results shown in the previous paper and stressed that using part of speech 
does not increased accuracy.

In paper [2] two approach to sentiment classification movie review. The first ap-
proach based on the number of positive and negative terms, intensification terms, and 
reverses the semantic polarity of a particular term. The second approach uses a ma-
chine learning algorithm, support vector machines. Using the first approach gives ac-
curacy about 65–70%. Using the second approach raises accuracy to 85%. Combina-
tion the two approaches not increase accuracy.

In paper [3] authors propose approach to sentiment classification with polarity 
shifting detection. Polarity-shifted and polarity-unshifted sentences are used as fea-
tures for classification based on support vector machine. This approach allows a few 
to improve the quality compared to the baseline.

In addition to the vocabulary and the vector approach for sentiment classifica-
tion a number of papers propose special probabilistic models, for example, tree-based 
sentiment classification and using relationship between words [6]. Also, a number 
of papers the authors clearly define the rules of assessment texts. Particularly, in pa-
per [7] different rule for determining the scope inverse word such as “no” are formu-
lated. Thus, in the work on sentiment classification are used as standard methods for 
text classification, and modified methods, which take into account polarity shifted 
terms, the syntactic structure of sentences, the relationship between words.

In current paper approach to twitter sentiment classification based on features ex-
tracted by using fragment rules. Thus obtained features with proper setting of rules form 
the space of smaller dimension and have good descriptive power, as was shown in [10].

Aspect-based opinion mining has been widely researched. There are some known 
approaches to this task [4]: (1) frequency-based approach, (2) rule-based approach, 
(3) supervised learning techniques, (4) topic modelling techniques.

Frequency-based approach uses the fact that 60–70% of the aspects are explicit 
nouns [4]. It is argued that people writes reviews in aspect language because they 
also read other reviews and take the terminology. Rule-based approach uses the as-
sumption that there is some kind of relation between aspects and polarities expressed 
in a text. A relation can be formalized by using rules. There is also a hybrid approach 
expressed in using rules for filtration of extracted noun phrases.

The problem may be considered as sequence labelling problem according to some 
suggested supervised machine learning methods. In particular, Hidden Markov Model 
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and Conditional Random Fields can be used. Topic modelling techniques use the natu-
ral assumption that topics of reviews are corresponding aspects.

In this paper, a rule-based approach to aspect extraction is proposed. There are 
two main rule models: grammar-based and fragment-based. Grammar models in-
clude the application of context-free grammars for example Tomita parser [8]. The 
other model is based on using special fragments from text and represents a number 
of operations under these fragments. A rule in this case is a declarative description 
of extracted information. Our model is an example of the last approach.

Due to the fact, that recall of aspect extraction can be achieved by using various 
dictionaries like thesaurus and domain-specific dictionaries, an important issue is im-
proving precision. In this case, the improvements expressed in using special filtra-
tion mechanisms for extracted aspects. Here particularly fragment rules can be used. 
The purpose of participation in the track was testing fragment rule-based approaches 
to aspect extraction and tweet classification. In addition, we attempted to use meth-
ods for automatic fragment rule generation.

The remainder of the article is as follows. In section 2 a formal description of the 
fragment rule language and a description of proposed approaches is given. In sec-
tion 3 obtained results are analyzed; a comparison with Baseline results and the best 
track results is given. Section 4 presents conclusion and future work.

2.	 Methods

2.1.	Fragment rules model

In this work for describing text features and classification rules we used a math-
ematical model based on defining operations on sets of text fragments [9].

Let we have the text 𝐷 = (𝑑1, …, 𝑑𝑛), where the 𝑑𝑖 ∈ 𝑇 — single element of the text, 
𝑇 = {𝑡1, …, 𝑡𝑚} — the set of all elements, 𝑛 — the length of the text, 𝑚 — number of dif-
ferent elements of the text.

Definition 1
The set 𝔽 = { (𝑝, 𝑞) | 1 ≤ 𝑝 ≤ 𝑞 ≤ 𝑛 } will be called the set of all parts of the text length 𝑛. 

Fragments of the text will be called the single elements of the set 𝑓 = (𝑓𝑙, 𝑓𝑟) ∈ 𝔽, that spec-
ify left 𝑓𝑙 and right 𝑓𝑟 border fragment (number of the first and last elements in fragment).

Definition 2
Let 𝑓 = (𝑓𝑙, 𝑓𝑟) ∈ 𝔽 and 𝑔 = (𝑔𝑙, 𝑔𝑟) ∈ 𝔽, then | 𝑓 | = 𝑓𝑟 − 𝑓𝑙 + 1 — length of the fragment;
𝑔 ⊐ 𝑓, if 𝑔𝑙 ≤ 𝑓𝑙 ≤ 𝑓𝑟 ≤ 𝑔𝑟 and 𝑓 ≠ 𝑔 — inclusion relation;
𝑔 ≪ 𝑓, if 𝑔𝑙 < 𝑓𝑙 or 𝑔𝑙 = 𝑓𝑙 & 𝑓𝑟 < 𝑔𝑟 — order relation.

Definition 3
The set of fragments 𝐹 will be called reduced, if there is no such 𝑓 ∈ 𝐹, that 𝑔 ⊐ 𝑓. 

𝑅(𝐹) denote reduced set of fragments based on the set 𝐹, 𝑅 — reduce operation.
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Definition 4
The distance between the fragments 𝑓 = (𝑓𝑙, 𝑓𝑟) ∈ 𝔽 and 𝑔 = (𝑔𝑙, 𝑔𝑟) ∈ 𝔽 is deter-

mined as follows:

𝑑𝑑(𝑓𝑓,𝑔𝑔) = �
𝑔𝑔𝑙𝑙 − 𝑓𝑓𝑟𝑟 ,𝑓𝑓 < 𝑔𝑔,
𝑓𝑓𝑙𝑙 − 𝑔𝑔𝑟𝑟 ,𝑔𝑔 < 𝑓𝑓,
𝑔𝑔𝑙𝑙 − 𝑓𝑓𝑟𝑟 ,𝑔𝑔 = 𝑓𝑓.

�

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1∇𝐹𝐹𝑄𝑄2�

𝐹𝐹𝑄𝑄1∇𝐹𝐹𝑄𝑄2 = �𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓1 ∈ 𝐹𝐹𝑄𝑄1 ,𝑓𝑓 ⊐ 𝑓𝑓1𝑜𝑜𝑜𝑜 ∃𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2 ,𝑓𝑓 ⊐ 𝑓𝑓2�

𝑄𝑄 = 𝑄𝑄1∆𝑛𝑛1𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1∆𝑛𝑛1𝐹𝐹𝑄𝑄2�
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Definition 5
The result of the a rule 𝑄 for the text 𝐷 is the set 𝐹𝑄 ⊂ 𝔽, containing all of the frag-

ment relevant this rule. If 𝐹𝑄 ≠ ∅, then call the text 𝐷 relevant rule 𝑄.

Definition 6
Basic rules is a rule 𝑄 = 𝑡, 𝑡 ∈ 𝑇 whose result is 𝐹𝑄 = {𝑓1, …, 𝑓𝑙} — reduced set 

of fragments, the elements that stand out in a single operation. Complex rule is a rule 𝑄, 
which is obtained by performing operations on other rules 𝑄1, …, 𝑄𝑘.

Let us now determine the possible operations to build complex rules of 𝑄 from 
the basic rules 𝑄1, …, 𝑄𝑘.

Definition 7
�𝑄 = 𝑄1 ∇ 𝑄2 — binary operation OR, 

𝑑𝑑(𝑓𝑓,𝑔𝑔) = �
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𝑓𝑓𝑙𝑙 − 𝑔𝑔𝑟𝑟 ,𝑔𝑔 < 𝑓𝑓,
𝑔𝑔𝑙𝑙 − 𝑓𝑓𝑟𝑟 ,𝑔𝑔 = 𝑓𝑓.
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.

For example, the rule good best quality extract fragments relevant the appear-
ance of these words in the text.

Definition 8
�
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𝑑𝑑(𝑓𝑓,𝑔𝑔) = �
𝑔𝑔𝑙𝑙 − 𝑓𝑓𝑟𝑟 ,𝑓𝑓 < 𝑔𝑔,
𝑓𝑓𝑙𝑙 − 𝑔𝑔𝑟𝑟 ,𝑔𝑔 < 𝑓𝑓,
𝑔𝑔𝑙𝑙 − 𝑓𝑓𝑟𝑟 ,𝑔𝑔 = 𝑓𝑓.

�

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1∇𝐹𝐹𝑄𝑄2�

𝐹𝐹𝑄𝑄1∇𝐹𝐹𝑄𝑄2 = �𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓1 ∈ 𝐹𝐹𝑄𝑄1 ,𝑓𝑓 ⊐ 𝑓𝑓1𝑜𝑜𝑜𝑜 ∃𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2 ,𝑓𝑓 ⊐ 𝑓𝑓2�

𝑄𝑄 = 𝑄𝑄1∆𝑛𝑛1𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1∆𝑛𝑛1𝐹𝐹𝑄𝑄2�

𝐹𝐹𝑄𝑄1∆𝑛𝑛1𝐹𝐹𝑄𝑄2 = �𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓1 ∈ 𝐹𝐹𝑄𝑄1𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2 , 𝑡𝑡𝑡𝑎𝑎𝑎𝑎  𝑓𝑓 ⊐ 𝑓𝑓1 ,𝑓𝑓 ⊐ 𝑓𝑓2𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑(𝑓𝑓1, 𝑓𝑓2) ≤ 𝑛𝑛1� .

For example, the rule beeline &4w LTE extract fragments, in which distance be-
tween “beeline” and “LTE” less than 4 words. This operation can be used without any 
limits on the distance between the words.

Definition 9
�𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2�

𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2 = �𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓1 ∈ 𝐹𝐹𝑄𝑄1𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2 , 𝑡𝑡𝑡𝑎𝑎𝑎𝑎 𝑓𝑓1 < 𝑓𝑓2, 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) > 0, 𝑓𝑓 ⊐ 𝑓𝑓1 ,𝑓𝑓 ⊐

𝑓𝑓2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) ≤ 𝑛𝑛2}

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅 �⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘�� ,⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘� = {𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝑄𝑄𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����:  𝑓𝑓𝑖𝑖 < 𝑓𝑓𝑖𝑖+1,

𝑑𝑑(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑖𝑖+1) = 1, 𝑖𝑖 ∈ 1,𝑘𝑘 − 1����������𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓 ⊐ 𝑓𝑓𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����}

𝑄𝑄 = 𝑄𝑄1 ≬ 𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝔽𝔽|𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1⋀𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄2�

𝑄𝑄 = 𝑄𝑄1 ⊲𝑛𝑛1,𝑛𝑛2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1|𝑛𝑛1 ≤ |𝑓𝑓| ≤ 𝑛𝑛2�

∇,∆,□,⋈, ≬,⊲, ∆𝑛𝑛1 ,□𝑛𝑛1𝑛𝑛2

□n1,n2
↛ □n1,n2

↚ □n1,n2
← □n1,n2

↛

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2
↛ 𝑄𝑄2 𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1| ∃!𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2: 𝑓𝑓 < 𝑓𝑓2, 0 < 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓,𝑓𝑓2) ≤ 𝑛𝑛2�

 — binary operation of sequence with limit on distance between  
fragments, 

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2�

𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2 = �𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓1 ∈ 𝐹𝐹𝑄𝑄1𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2 , 𝑡𝑡𝑡𝑎𝑎𝑎𝑎 𝑓𝑓1 < 𝑓𝑓2, 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) > 0, 𝑓𝑓 ⊐ 𝑓𝑓1 ,𝑓𝑓 ⊐

𝑓𝑓2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) ≤ 𝑛𝑛2}

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅 �⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘�� ,⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘� = {𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝑄𝑄𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����:  𝑓𝑓𝑖𝑖 < 𝑓𝑓𝑖𝑖+1,

𝑑𝑑(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑖𝑖+1) = 1, 𝑖𝑖 ∈ 1,𝑘𝑘 − 1����������𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓 ⊐ 𝑓𝑓𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����}

𝑄𝑄 = 𝑄𝑄1 ≬ 𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝔽𝔽|𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1⋀𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄2�

𝑄𝑄 = 𝑄𝑄1 ⊲𝑛𝑛1,𝑛𝑛2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1|𝑛𝑛1 ≤ |𝑓𝑓| ≤ 𝑛𝑛2�

∇,∆,□,⋈, ≬,⊲, ∆𝑛𝑛1 ,□𝑛𝑛1𝑛𝑛2

□n1,n2
↛ □n1,n2

↚ □n1,n2
← □n1,n2

↛

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2
↛ 𝑄𝑄2 𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1| ∃!𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2: 𝑓𝑓 < 𝑓𝑓2, 0 < 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓,𝑓𝑓2) ≤ 𝑛𝑛2�

, 

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2�

𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2 = �𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓1 ∈ 𝐹𝐹𝑄𝑄1𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2 , 𝑡𝑡𝑡𝑎𝑎𝑎𝑎 𝑓𝑓1 < 𝑓𝑓2, 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) > 0, 𝑓𝑓 ⊐ 𝑓𝑓1 ,𝑓𝑓 ⊐

𝑓𝑓2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) ≤ 𝑛𝑛2}

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅 �⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘�� ,⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘� = {𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝑄𝑄𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����:  𝑓𝑓𝑖𝑖 < 𝑓𝑓𝑖𝑖+1,

𝑑𝑑(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑖𝑖+1) = 1, 𝑖𝑖 ∈ 1,𝑘𝑘 − 1����������𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓 ⊐ 𝑓𝑓𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����}

𝑄𝑄 = 𝑄𝑄1 ≬ 𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝔽𝔽|𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1⋀𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄2�

𝑄𝑄 = 𝑄𝑄1 ⊲𝑛𝑛1,𝑛𝑛2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1|𝑛𝑛1 ≤ |𝑓𝑓| ≤ 𝑛𝑛2�

∇,∆,□,⋈, ≬,⊲, ∆𝑛𝑛1 ,□𝑛𝑛1𝑛𝑛2

□n1,n2
↛ □n1,n2

↚ □n1,n2
← □n1,n2

↛

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2
↛ 𝑄𝑄2 𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1| ∃!𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2: 𝑓𝑓 < 𝑓𝑓2, 0 < 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓,𝑓𝑓2) ≤ 𝑛𝑛2�

 

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2�

𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2 = �𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓1 ∈ 𝐹𝐹𝑄𝑄1𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2 , 𝑡𝑡𝑡𝑎𝑎𝑎𝑎 𝑓𝑓1 < 𝑓𝑓2, 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) > 0, 𝑓𝑓 ⊐ 𝑓𝑓1 ,𝑓𝑓 ⊐

𝑓𝑓2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) ≤ 𝑛𝑛2}

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅 �⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘�� ,⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘� = {𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝑄𝑄𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����:  𝑓𝑓𝑖𝑖 < 𝑓𝑓𝑖𝑖+1,

𝑑𝑑(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑖𝑖+1) = 1, 𝑖𝑖 ∈ 1,𝑘𝑘 − 1����������𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓 ⊐ 𝑓𝑓𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����}

𝑄𝑄 = 𝑄𝑄1 ≬ 𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝔽𝔽|𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1⋀𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄2�

𝑄𝑄 = 𝑄𝑄1 ⊲𝑛𝑛1,𝑛𝑛2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1|𝑛𝑛1 ≤ |𝑓𝑓| ≤ 𝑛𝑛2�

∇,∆,□,⋈, ≬,⊲, ∆𝑛𝑛1 ,□𝑛𝑛1𝑛𝑛2

□n1,n2
↛ □n1,n2

↚ □n1,n2
← □n1,n2

↛

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2
↛ 𝑄𝑄2 𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1| ∃!𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2: 𝑓𝑓 < 𝑓𝑓2, 0 < 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓,𝑓𝑓2) ≤ 𝑛𝑛2�

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2�

𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2 = �𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓1 ∈ 𝐹𝐹𝑄𝑄1𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2 , 𝑡𝑡𝑡𝑎𝑎𝑎𝑎 𝑓𝑓1 < 𝑓𝑓2, 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) > 0, 𝑓𝑓 ⊐ 𝑓𝑓1 ,𝑓𝑓 ⊐

𝑓𝑓2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) ≤ 𝑛𝑛2}

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅 �⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘�� ,⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘� = {𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝑄𝑄𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����:  𝑓𝑓𝑖𝑖 < 𝑓𝑓𝑖𝑖+1,

𝑑𝑑(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑖𝑖+1) = 1, 𝑖𝑖 ∈ 1,𝑘𝑘 − 1����������𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓 ⊐ 𝑓𝑓𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����}

𝑄𝑄 = 𝑄𝑄1 ≬ 𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝔽𝔽|𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1⋀𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄2�

𝑄𝑄 = 𝑄𝑄1 ⊲𝑛𝑛1,𝑛𝑛2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1|𝑛𝑛1 ≤ |𝑓𝑓| ≤ 𝑛𝑛2�

∇,∆,□,⋈, ≬,⊲, ∆𝑛𝑛1 ,□𝑛𝑛1𝑛𝑛2

□n1,n2
↛ □n1,n2

↚ □n1,n2
← □n1,n2

↛

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2
↛ 𝑄𝑄2 𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1| ∃!𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2: 𝑓𝑓 < 𝑓𝑓2, 0 < 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓,𝑓𝑓2) ≤ 𝑛𝑛2�

.

For example, the rule @Company: 3w (sale discount) extract fragments, which 
after the name of the company at a distance of 3 words are words of “sale” or “dis-
count”. This operation can be used without any limits on the distance between the 
words.



Aspect Extraction and Twitter Sentiment Classification by Fragment Rules

	

Definition 10
�𝑄 = ⋈ (𝑄1, …, 𝑄𝑘) — multiple operation sequences of neighbouring elements (se-
lect of neighbouring fragments), 

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2�

𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2 = �𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓1 ∈ 𝐹𝐹𝑄𝑄1𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2 , 𝑡𝑡𝑡𝑎𝑎𝑎𝑎 𝑓𝑓1 < 𝑓𝑓2, 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) > 0, 𝑓𝑓 ⊐ 𝑓𝑓1 ,𝑓𝑓 ⊐

𝑓𝑓2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) ≤ 𝑛𝑛2}

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅 �⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘�� ,⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘� = {𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝑄𝑄𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����:  𝑓𝑓𝑖𝑖 < 𝑓𝑓𝑖𝑖+1,

𝑑𝑑(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑖𝑖+1) = 1, 𝑖𝑖 ∈ 1,𝑘𝑘 − 1����������𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓 ⊐ 𝑓𝑓𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����}

𝑄𝑄 = 𝑄𝑄1 ≬ 𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝔽𝔽|𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1⋀𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄2�

𝑄𝑄 = 𝑄𝑄1 ⊲𝑛𝑛1,𝑛𝑛2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1|𝑛𝑛1 ≤ |𝑓𝑓| ≤ 𝑛𝑛2�

∇,∆,□,⋈, ≬,⊲, ∆𝑛𝑛1 ,□𝑛𝑛1𝑛𝑛2

□n1,n2
↛ □n1,n2

↚ □n1,n2
← □n1,n2

↛

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2
↛ 𝑄𝑄2 𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1| ∃!𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2: 𝑓𝑓 < 𝑓𝑓2, 0 < 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓,𝑓𝑓2) ≤ 𝑛𝑛2�

 

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2�

𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2 = �𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓1 ∈ 𝐹𝐹𝑄𝑄1𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2 , 𝑡𝑡𝑡𝑎𝑎𝑎𝑎 𝑓𝑓1 < 𝑓𝑓2, 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) > 0, 𝑓𝑓 ⊐ 𝑓𝑓1 ,𝑓𝑓 ⊐

𝑓𝑓2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓1, 𝑓𝑓2) ≤ 𝑛𝑛2}

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅 �⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘�� ,⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘� = {𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝑄𝑄𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����:  𝑓𝑓𝑖𝑖 < 𝑓𝑓𝑖𝑖+1,

𝑑𝑑(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑖𝑖+1) = 1, 𝑖𝑖 ∈ 1,𝑘𝑘 − 1����������𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓 ⊐ 𝑓𝑓𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����}

𝑄𝑄 = 𝑄𝑄1 ≬ 𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝔽𝔽|𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1⋀𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄2�

𝑄𝑄 = 𝑄𝑄1 ⊲𝑛𝑛1,𝑛𝑛2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1|𝑛𝑛1 ≤ |𝑓𝑓| ≤ 𝑛𝑛2�

∇,∆,□,⋈, ≬,⊲, ∆𝑛𝑛1 ,□𝑛𝑛1𝑛𝑛2

□n1,n2
↛ □n1,n2

↚ □n1,n2
← □n1,n2

↛

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2
↛ 𝑄𝑄2 𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1| ∃!𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2: 𝑓𝑓 < 𝑓𝑓2, 0 < 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓,𝑓𝑓2) ≤ 𝑛𝑛2�

 

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2�

𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2 = �𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓1 ∈ 𝐹𝐹𝑄𝑄1𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2 , 𝑡𝑡𝑡𝑎𝑎𝑎𝑎 𝑓𝑓1 < 𝑓𝑓2, 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) > 0, 𝑓𝑓 ⊐ 𝑓𝑓1 ,𝑓𝑓 ⊐

𝑓𝑓2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) ≤ 𝑛𝑛2}

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅 �⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘�� ,⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘� = {𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝑄𝑄𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����:  𝑓𝑓𝑖𝑖 < 𝑓𝑓𝑖𝑖+1,

𝑑𝑑(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑖𝑖+1) = 1, 𝑖𝑖 ∈ 1,𝑘𝑘 − 1����������𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓 ⊐ 𝑓𝑓𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����}

𝑄𝑄 = 𝑄𝑄1 ≬ 𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝔽𝔽|𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1⋀𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄2�

𝑄𝑄 = 𝑄𝑄1 ⊲𝑛𝑛1,𝑛𝑛2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1|𝑛𝑛1 ≤ |𝑓𝑓| ≤ 𝑛𝑛2�

∇,∆,□,⋈, ≬,⊲, ∆𝑛𝑛1 ,□𝑛𝑛1𝑛𝑛2

□n1,n2
↛ □n1,n2

↚ □n1,n2
← □n1,n2

↛

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2
↛ 𝑄𝑄2 𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1| ∃!𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2: 𝑓𝑓 < 𝑓𝑓2, 0 < 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓,𝑓𝑓2) ≤ 𝑛𝑛2�

	

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2�

𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2 = �𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓1 ∈ 𝐹𝐹𝑄𝑄1𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2 , 𝑡𝑡𝑡𝑎𝑎𝑎𝑎 𝑓𝑓1 < 𝑓𝑓2, 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) > 0, 𝑓𝑓 ⊐ 𝑓𝑓1 ,𝑓𝑓 ⊐

𝑓𝑓2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) ≤ 𝑛𝑛2}

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅 �⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘�� ,⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘� = {𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝑄𝑄𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����:  𝑓𝑓𝑖𝑖 < 𝑓𝑓𝑖𝑖+1,

𝑑𝑑(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑖𝑖+1) = 1, 𝑖𝑖 ∈ 1,𝑘𝑘 − 1����������𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓 ⊐ 𝑓𝑓𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����}

𝑄𝑄 = 𝑄𝑄1 ≬ 𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝔽𝔽|𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1⋀𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄2�

𝑄𝑄 = 𝑄𝑄1 ⊲𝑛𝑛1,𝑛𝑛2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1|𝑛𝑛1 ≤ |𝑓𝑓| ≤ 𝑛𝑛2�

∇,∆,□,⋈, ≬,⊲, ∆𝑛𝑛1 ,□𝑛𝑛1𝑛𝑛2

□n1,n2
↛ □n1,n2

↚ □n1,n2
← □n1,n2

↛

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2
↛ 𝑄𝑄2 𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1| ∃!𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2: 𝑓𝑓 < 𝑓𝑓2, 0 < 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓,𝑓𝑓2) ≤ 𝑛𝑛2�

. 

For example, the rule “(boss head director chief) (mts beeline megafon)” extract 
phrases corresponding to different telecom executives.

Definition 11
�

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2�

𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2 = �𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓1 ∈ 𝐹𝐹𝑄𝑄1𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2 , 𝑡𝑡𝑡𝑎𝑎𝑎𝑎 𝑓𝑓1 < 𝑓𝑓2, 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) > 0, 𝑓𝑓 ⊐ 𝑓𝑓1 ,𝑓𝑓 ⊐

𝑓𝑓2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) ≤ 𝑛𝑛2}

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅 �⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘�� ,⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘� = {𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝑄𝑄𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����:  𝑓𝑓𝑖𝑖 < 𝑓𝑓𝑖𝑖+1,

𝑑𝑑(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑖𝑖+1) = 1, 𝑖𝑖 ∈ 1,𝑘𝑘 − 1����������𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓 ⊐ 𝑓𝑓𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����}

𝑄𝑄 = 𝑄𝑄1 ≬ 𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝔽𝔽|𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1⋀𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄2�

𝑄𝑄 = 𝑄𝑄1 ⊲𝑛𝑛1,𝑛𝑛2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1|𝑛𝑛1 ≤ |𝑓𝑓| ≤ 𝑛𝑛2�

∇,∆,□,⋈, ≬,⊲, ∆𝑛𝑛1 ,□𝑛𝑛1𝑛𝑛2

□n1,n2
↛ □n1,n2

↚ □n1,n2
← □n1,n2

↛

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2
↛ 𝑄𝑄2 𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1| ∃!𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2: 𝑓𝑓 < 𝑓𝑓2, 0 < 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓,𝑓𝑓2) ≤ 𝑛𝑛2�

 — binary operation finding the intersection of fragments,  

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2�

𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2 = �𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓1 ∈ 𝐹𝐹𝑄𝑄1𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2 , 𝑡𝑡𝑡𝑎𝑎𝑎𝑎 𝑓𝑓1 < 𝑓𝑓2, 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) > 0, 𝑓𝑓 ⊐ 𝑓𝑓1 ,𝑓𝑓 ⊐

𝑓𝑓2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) ≤ 𝑛𝑛2}

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅 �⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘�� ,⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘� = {𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝑄𝑄𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����:  𝑓𝑓𝑖𝑖 < 𝑓𝑓𝑖𝑖+1,

𝑑𝑑(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑖𝑖+1) = 1, 𝑖𝑖 ∈ 1,𝑘𝑘 − 1����������𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓 ⊐ 𝑓𝑓𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����}

𝑄𝑄 = 𝑄𝑄1 ≬ 𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝔽𝔽|𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1⋀𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄2�

𝑄𝑄 = 𝑄𝑄1 ⊲𝑛𝑛1,𝑛𝑛2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1|𝑛𝑛1 ≤ |𝑓𝑓| ≤ 𝑛𝑛2�

∇,∆,□,⋈, ≬,⊲, ∆𝑛𝑛1 ,□𝑛𝑛1𝑛𝑛2

□n1,n2
↛ □n1,n2

↚ □n1,n2
← □n1,n2

↛

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2
↛ 𝑄𝑄2 𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1| ∃!𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2: 𝑓𝑓 < 𝑓𝑓2, 0 < 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓,𝑓𝑓2) ≤ 𝑛𝑛2�

.

For example, the rule [Chapter $SentBegin] extract words “Chapter”, that are 
written in the beginning of the sentence.

Definition 12
�

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2�

𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2 = �𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓1 ∈ 𝐹𝐹𝑄𝑄1𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2 , 𝑡𝑡𝑡𝑎𝑎𝑎𝑎 𝑓𝑓1 < 𝑓𝑓2, 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) > 0, 𝑓𝑓 ⊐ 𝑓𝑓1 ,𝑓𝑓 ⊐

𝑓𝑓2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓1, 𝑓𝑓2) ≤ 𝑛𝑛2}

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅 �⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘�� ,⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘� = {𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝑄𝑄𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����:  𝑓𝑓𝑖𝑖 < 𝑓𝑓𝑖𝑖+1,

𝑑𝑑(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑖𝑖+1) = 1, 𝑖𝑖 ∈ 1,𝑘𝑘 − 1����������𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓 ⊐ 𝑓𝑓𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����}

𝑄𝑄 = 𝑄𝑄1 ≬ 𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝔽𝔽|𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1⋀𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄2�

𝑄𝑄 = 𝑄𝑄1 ⊲𝑛𝑛1,𝑛𝑛2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1|𝑛𝑛1 ≤ |𝑓𝑓| ≤ 𝑛𝑛2�

∇,∆,□,⋈, ≬,⊲, ∆𝑛𝑛1 ,□𝑛𝑛1𝑛𝑛2

□n1,n2
↛ □n1,n2

↚ □n1,n2
← □n1,n2

↛

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2
↛ 𝑄𝑄2 𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1| ∃!𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2: 𝑓𝑓 < 𝑓𝑓2, 0 < 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓,𝑓𝑓2) ≤ 𝑛𝑛2�

 — unary operator imposes limitations on length of the fragment, 

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2�

𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2 = �𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓1 ∈ 𝐹𝐹𝑄𝑄1𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2 , 𝑡𝑡𝑡𝑎𝑎𝑎𝑎 𝑓𝑓1 < 𝑓𝑓2, 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) > 0, 𝑓𝑓 ⊐ 𝑓𝑓1 ,𝑓𝑓 ⊐

𝑓𝑓2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) ≤ 𝑛𝑛2}

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅 �⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘�� ,⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘� = {𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝑄𝑄𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����:  𝑓𝑓𝑖𝑖 < 𝑓𝑓𝑖𝑖+1,

𝑑𝑑(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑖𝑖+1) = 1, 𝑖𝑖 ∈ 1,𝑘𝑘 − 1����������𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓 ⊐ 𝑓𝑓𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����}

𝑄𝑄 = 𝑄𝑄1 ≬ 𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝔽𝔽|𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1⋀𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄2�

𝑄𝑄 = 𝑄𝑄1 ⊲𝑛𝑛1,𝑛𝑛2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1|𝑛𝑛1 ≤ |𝑓𝑓| ≤ 𝑛𝑛2�

∇,∆,□,⋈, ≬,⊲, ∆𝑛𝑛1 ,□𝑛𝑛1𝑛𝑛2

□n1,n2
↛ □n1,n2

↚ □n1,n2
← □n1,n2

↛

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2
↛ 𝑄𝑄2 𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1| ∃!𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2: 𝑓𝑓 < 𝑓𝑓2, 0 < 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓,𝑓𝑓2) ≤ 𝑛𝑛2�

.

For example, the rule (beeline & mts) #IN #INTERVAL(2w/3w) extract fragments 
containing specific words in length from 2 to 3 words.

To be able to construct rules include negation and conditional statements (when 
the presence of the expression is checked, but it is not included in the final fragment) are 
special variants of binary rules 

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2�

𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2 = �𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓1 ∈ 𝐹𝐹𝑄𝑄1𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2 , 𝑡𝑡𝑡𝑎𝑎𝑎𝑎 𝑓𝑓1 < 𝑓𝑓2, 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) > 0, 𝑓𝑓 ⊐ 𝑓𝑓1 ,𝑓𝑓 ⊐

𝑓𝑓2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) ≤ 𝑛𝑛2}

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅 �⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘�� ,⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘� = {𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝑄𝑄𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����:  𝑓𝑓𝑖𝑖 < 𝑓𝑓𝑖𝑖+1,

𝑑𝑑(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑖𝑖+1) = 1, 𝑖𝑖 ∈ 1,𝑘𝑘 − 1����������𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓 ⊐ 𝑓𝑓𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����}

𝑄𝑄 = 𝑄𝑄1 ≬ 𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝔽𝔽|𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1⋀𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄2�

𝑄𝑄 = 𝑄𝑄1 ⊲𝑛𝑛1,𝑛𝑛2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1|𝑛𝑛1 ≤ |𝑓𝑓| ≤ 𝑛𝑛2�

∇,∆,□,⋈, ≬,⊲, ∆𝑛𝑛1 ,□𝑛𝑛1𝑛𝑛2

□n1,n2
↛ □n1,n2

↚ □n1,n2
← □n1,n2

↛

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2
↛ 𝑄𝑄2 𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1| ∃!𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2: 𝑓𝑓 < 𝑓𝑓2, 0 < 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓,𝑓𝑓2) ≤ 𝑛𝑛2�

, in which one of the operands 
is considered negative or conditional. For example, 

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2�

𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2 = �𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓1 ∈ 𝐹𝐹𝑄𝑄1𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2 , 𝑡𝑡𝑡𝑎𝑎𝑎𝑎 𝑓𝑓1 < 𝑓𝑓2, 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) > 0, 𝑓𝑓 ⊐ 𝑓𝑓1 ,𝑓𝑓 ⊐

𝑓𝑓2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) ≤ 𝑛𝑛2}

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅 �⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘�� ,⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘� = {𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝑄𝑄𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����:  𝑓𝑓𝑖𝑖 < 𝑓𝑓𝑖𝑖+1,

𝑑𝑑(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑖𝑖+1) = 1, 𝑖𝑖 ∈ 1,𝑘𝑘 − 1����������𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓 ⊐ 𝑓𝑓𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����}

𝑄𝑄 = 𝑄𝑄1 ≬ 𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝔽𝔽|𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1⋀𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄2�

𝑄𝑄 = 𝑄𝑄1 ⊲𝑛𝑛1,𝑛𝑛2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1|𝑛𝑛1 ≤ |𝑓𝑓| ≤ 𝑛𝑛2�

∇,∆,□,⋈, ≬,⊲, ∆𝑛𝑛1 ,□𝑛𝑛1𝑛𝑛2

□n1,n2
↛ □n1,n2

↚ □n1,n2
← □n1,n2

↛

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2
↛ 𝑄𝑄2 𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1| ∃!𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2: 𝑓𝑓 < 𝑓𝑓2, 0 < 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓,𝑓𝑓2) ≤ 𝑛𝑛2�

 is operator finding the se-
quence in which the second operand is taken from the negation; 

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2�

𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2 = �𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓1 ∈ 𝐹𝐹𝑄𝑄1𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2 , 𝑡𝑡𝑡𝑎𝑎𝑎𝑎 𝑓𝑓1 < 𝑓𝑓2, 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) > 0, 𝑓𝑓 ⊐ 𝑓𝑓1 ,𝑓𝑓 ⊐

𝑓𝑓2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) ≤ 𝑛𝑛2}

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅 �⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘�� ,⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘� = {𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝑄𝑄𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����:  𝑓𝑓𝑖𝑖 < 𝑓𝑓𝑖𝑖+1,

𝑑𝑑(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑖𝑖+1) = 1, 𝑖𝑖 ∈ 1,𝑘𝑘 − 1����������𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓 ⊐ 𝑓𝑓𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����}

𝑄𝑄 = 𝑄𝑄1 ≬ 𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝔽𝔽|𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1⋀𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄2�

𝑄𝑄 = 𝑄𝑄1 ⊲𝑛𝑛1,𝑛𝑛2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1|𝑛𝑛1 ≤ |𝑓𝑓| ≤ 𝑛𝑛2�

∇,∆,□,⋈, ≬,⊲, ∆𝑛𝑛1 ,□𝑛𝑛1𝑛𝑛2

□n1,n2
↛ □n1,n2

↚ □n1,n2
← □n1,n2

↛

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2
↛ 𝑄𝑄2 𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1| ∃!𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2: 𝑓𝑓 < 𝑓𝑓2, 0 < 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓,𝑓𝑓2) ≤ 𝑛𝑛2�

 is operator finding 
the sequence in which the first operand is taken from the negation; 

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2�

𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2 = �𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓1 ∈ 𝐹𝐹𝑄𝑄1𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2 , 𝑡𝑡𝑡𝑎𝑎𝑎𝑎 𝑓𝑓1 < 𝑓𝑓2, 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) > 0, 𝑓𝑓 ⊐ 𝑓𝑓1 ,𝑓𝑓 ⊐

𝑓𝑓2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) ≤ 𝑛𝑛2}

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅 �⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘�� ,⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘� = {𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝑄𝑄𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����:  𝑓𝑓𝑖𝑖 < 𝑓𝑓𝑖𝑖+1,

𝑑𝑑(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑖𝑖+1) = 1, 𝑖𝑖 ∈ 1,𝑘𝑘 − 1����������𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓 ⊐ 𝑓𝑓𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����}

𝑄𝑄 = 𝑄𝑄1 ≬ 𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝔽𝔽|𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1⋀𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄2�

𝑄𝑄 = 𝑄𝑄1 ⊲𝑛𝑛1,𝑛𝑛2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1|𝑛𝑛1 ≤ |𝑓𝑓| ≤ 𝑛𝑛2�

∇,∆,□,⋈, ≬,⊲, ∆𝑛𝑛1 ,□𝑛𝑛1𝑛𝑛2

□n1,n2
↛ □n1,n2

↚ □n1,n2
← □n1,n2

↛

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2
↛ 𝑄𝑄2 𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1| ∃!𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2: 𝑓𝑓 < 𝑓𝑓2, 0 < 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓,𝑓𝑓2) ≤ 𝑛𝑛2�

 — is operator 
finding the sequence in which the first operand is conditional. The rule 

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2�

𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2 = �𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓1 ∈ 𝐹𝐹𝑄𝑄1𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2 , 𝑡𝑡𝑡𝑎𝑎𝑎𝑎 𝑓𝑓1 < 𝑓𝑓2, 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) > 0, 𝑓𝑓 ⊐ 𝑓𝑓1 ,𝑓𝑓 ⊐

𝑓𝑓2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) ≤ 𝑛𝑛2}

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅 �⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘�� ,⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘� = {𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝑄𝑄𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����:  𝑓𝑓𝑖𝑖 < 𝑓𝑓𝑖𝑖+1,

𝑑𝑑(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑖𝑖+1) = 1, 𝑖𝑖 ∈ 1,𝑘𝑘 − 1����������𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓 ⊐ 𝑓𝑓𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����}

𝑄𝑄 = 𝑄𝑄1 ≬ 𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝔽𝔽|𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1⋀𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄2�

𝑄𝑄 = 𝑄𝑄1 ⊲𝑛𝑛1,𝑛𝑛2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1|𝑛𝑛1 ≤ |𝑓𝑓| ≤ 𝑛𝑛2�

∇,∆,□,⋈, ≬,⊲, ∆𝑛𝑛1 ,□𝑛𝑛1𝑛𝑛2

□n1,n2
↛ □n1,n2

↚ □n1,n2
← □n1,n2

↛

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2
↛ 𝑄𝑄2 𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1| ∃!𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2: 𝑓𝑓 < 𝑓𝑓2, 0 < 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓,𝑓𝑓2) ≤ 𝑛𝑛2�

 defined as 

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅�𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2�

𝐹𝐹𝑄𝑄1□𝑛𝑛1,𝑛𝑛2𝐹𝐹𝑄𝑄2 = �𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓1 ∈ 𝐹𝐹𝑄𝑄1𝑎𝑎𝑎𝑎𝑎𝑎 ∃𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2 , 𝑡𝑡𝑡𝑎𝑎𝑎𝑎 𝑓𝑓1 < 𝑓𝑓2, 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) > 0, 𝑓𝑓 ⊐ 𝑓𝑓1 ,𝑓𝑓 ⊐

𝑓𝑓2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓1,𝑓𝑓2) ≤ 𝑛𝑛2}

𝐹𝐹𝑄𝑄 ≡ 𝑅𝑅 �⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘�� ,⋈ �𝐹𝐹𝑄𝑄1 , … ,𝐹𝐹𝑄𝑄𝑘𝑘� = {𝑓𝑓 ∈ 𝔽𝔽|∃𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝑄𝑄𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����:  𝑓𝑓𝑖𝑖 < 𝑓𝑓𝑖𝑖+1,

𝑑𝑑(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑖𝑖+1) = 1, 𝑖𝑖 ∈ 1,𝑘𝑘 − 1����������𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓 ⊐ 𝑓𝑓𝑖𝑖 , 𝑖𝑖 ∈ 1,𝑘𝑘�����}

𝑄𝑄 = 𝑄𝑄1 ≬ 𝑄𝑄2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝔽𝔽|𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1⋀𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄2�

𝑄𝑄 = 𝑄𝑄1 ⊲𝑛𝑛1,𝑛𝑛2

𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1|𝑛𝑛1 ≤ |𝑓𝑓| ≤ 𝑛𝑛2�

∇,∆,□,⋈, ≬,⊲, ∆𝑛𝑛1 ,□𝑛𝑛1𝑛𝑛2

□n1,n2
↛ □n1,n2

↚ □n1,n2
← □n1,n2

↛

𝑄𝑄 = 𝑄𝑄1□𝑛𝑛1,𝑛𝑛2
↛ 𝑄𝑄2 𝐹𝐹𝑄𝑄 ≡ �𝑓𝑓 ∈ 𝐹𝐹𝑄𝑄1| ∃!𝑓𝑓2 ∈ 𝐹𝐹𝑄𝑄2: 𝑓𝑓 < 𝑓𝑓2, 0 < 𝑛𝑛1 ≤ 𝑑𝑑(𝑓𝑓,𝑓𝑓2) ≤ 𝑛𝑛2�.

For example, the rule no :̂3 (good best quality) extract the word “good”, “best” 
and “quality” before which there is no word “no” at distance of three words.

#define command sets the named expression. In the pre-treatment rules text ex-
pression is substituted into the rule text. These expressions are used to avoid repeat-
ing elements in complex rules. #set command s used to set the saved variables. Unlike 
#define command at the first reference to the variable is made save search results 
and on subsequent calls text processing is not performed. To use named expressions 
or saved variables in the rule is necessary to use operators @ and @@.

For example, #define Good (good best quality) sets the named expression Good, 
which should be handled @Good.
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�

2.2.	Sentiment classification

For sentiment classification we used a hybrid approach which is based on combining 
rule-based feature extraction and classifier training by machine learning methods. Classi-
fier induction includes training set pre-processing, feature extraction by using predefined 
set of fragment rules, training classifier by using selected machine learning methods.

Texts in the training set are pre-processed by using the following procedures:
1. �Graphematical analysis (tokenization, sentence boundary detection, phonetic 

coding, word descriptors extraction).
2. �Linguistic analysis (lemmatization, part of speech tagging, word sense disam-

biguation, collocation extraction, syntactic features extraction).
3. �Low level indexes construction (inverted index of source word forms, inverted 

index of lemma word forms, inverted index of word descriptors).
The general scheme of the learning algorithm has the following form.
1. Building vector representation of texts by using the set of fragment rules.
2. Dimension reduction and feature weights calculation.
3. Training and evaluation of the classifier on the training set.

At the first step the predefined set of 100 special fragment rules are used for 
features extraction.

Example of fragment rule:
�@@COND :̂5((@@NEG :̂5\s(@@INTENŜ :5\s($Adj $Verb $Noun $Adv))) 
&5\s? @@OBJECT),

where @@COND — condition words (“if”), @@NEG — negative words, @@INTENS — in-
tensive words (“very”, “far”, ”purely”), @@OBJECT — object (“mts”, “megafon”, “beeline”).

At the second step we used common methods for dimension reduction and fea-
ture weights calculation.

At the third step two classifiers are trained, one classifier for the positive class 
and one for the negative class. For classifier training we used our robust realization 
of the following standard machine learning methods:

1. Bayesian classifier based on multivariate Gaussian distribution (gmm),
2. K-nearest neighbours classifier (knn),
3. Von Mises-Fisher classifier (vmfs),
4. Roccio classifier (roccio),
5. Support vector machines classifier (svm).
Trained positive and negative classifiers are used for building the final decision 

rule of the following form:

 
 𝑑𝑑′(𝑢𝑢) = �

1,𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝(𝑢𝑢) > 𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛(𝑢𝑢) | 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝(𝑢𝑢) = 𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛(𝑢𝑢) = 1,𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝(𝑢𝑢) > 𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛(𝑢𝑢)
−1,𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝(𝑢𝑢) < 𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛(𝑢𝑢) | 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝(𝑢𝑢) = 𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛(𝑢𝑢) = 1,𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝(𝑢𝑢) < 𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛(𝑢𝑢)

0,𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝(𝑢𝑢) = 𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛(𝑢𝑢) = 0
�

where 𝑑′(𝑢) ∈ {−1, 0, 1} is the final decision rule, 𝑑𝑝𝑜𝑠(𝑢) ∈ {0, 1} and 𝑑𝑛𝑒𝑔(𝑢) ∈ {0, 1} 
is the decision rules for positive and negative class, 𝑤𝑝𝑜𝑠(𝑢) ∈ [0, 1] and 𝑤𝑛𝑒𝑔(𝑢) ∈ [0, 1] 
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and degree of compliance positive or negative class (for probabilistic classifiers it is the 
probability assignment to the corresponding class, for svm it is the distance to corre-
sponding hyperplane etc.), 𝑢 — the set of features in the text.

2.3.	Rule-based explicit aspect extraction

There are two types of aspects defined in aspect-based opinion mining: explicit 
and implicit. Explicit aspects are concepts that explicitly mentioned in a sentence. Im-
plicit aspects are expressed indirectly. This section proposes a number of approaches 
to explicit aspect extraction based on fragment rules. Preliminary let 𝐴 = {𝑎1, …, 𝑎𝑛} 
be a set off unique aspects extracted by experts and represented in the training set. 
Training set has been provide by SentiRuEval organizers [5].

Multiple operation OR
Basically for the purpose of explicit aspect extraction this kind of fragment rule 

can be used:

𝑄 = 𝑄∇(𝑎1, 𝑎2, …, 𝑎𝑛), 𝑎𝑖 ∈ 𝐴.

Here 𝑄∇ — is a rule, where operation OR acts as a connector between unique as-
pects. In fact, an appropriate set of fragments is extracted for each aspect. The result 
of the operation is a reduced united set of fragments.

Multiple operation OR with maximizing reduction
In the concerned case, the following situation may arise. Instead of a whole as-

pect, structural parts can be extracted. For example, there are three extracted aspects 
HOT, DISH, HOT DISH. A standard reduction method will delete the biggest fragment 
HOT DISH, and we’ll have two aspects instead of one. In this regard, it was decided 
to modify the reduction method and to exclude fragments which are included in other 
fragments. Also it should be noted that neighbouring fragments may be one aspect. 
Therefore overlapping fragments and neighbouring fragments should be combined. 
As a result, fragments of the maximum length are extracted.

Rule-based filtration
Also it seems appropriate to use rule-based filtration for aspect extraction. The 

extraction algorithm constructed as follows. At first using aspects selected by ex-
perts fragments from an aspect to the nearest adjective are extracted. Then, the most 
common rules based on the extracted fragments (templates) are formed. Here in the 
feature space is defined previously. The generated rules are applied to filter the set 
of extracted candidate-aspects by counting support and removal of candidates with 
support below a threshold. As already mentioned, recall may be achieved by using ap-
propriate dictionaries. In this case, the filtration process is necessary to improve preci-
sion. Definition of the context of some aspects allows to separate situations where the 
term is not an aspect.
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Let (𝑎𝑖) be a rule, a result is a set of fragments from the aspect 𝑎𝑖 to the nearest 
adjective. The aspect extraction algorithm for each aspect selected by experts gener-
ates a set of aspect contexts 𝑄(𝑎𝑖) by applying rule 𝑄(𝑎𝑖) to the training set 𝐿.

Then the rule generation algorithm builds templates of these contexts. In each 
review candidate-aspects are extracted and filtered by using these templates. Finally, 
we have a set of extracted explicit aspects.

Algorithm2. Explicit aspect extraction with filtration
Input. 	 𝐴𝐿 — set of aspects selected by experts
		  𝐼 — hierarchy of features,
		  𝐿 — train set,
		  𝑅 — test set

Output.	 𝐴𝑇 — extracted explicit aspects.

Step 1.	 For all 𝑎𝑖 ∈ 𝐴𝐿
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑢𝑙𝑒𝑠(𝐼, 𝑄𝐿(𝑎𝑖))

Step 2.	� For all 𝑟 ∈ 𝑅 
For all 𝑎𝑖 ∈ 𝐴

𝐴𝑇 ← 𝐴𝑇 ∪ 𝐹𝑖𝑙𝑡𝑒𝑟𝐴𝑠𝑝𝑒𝑐𝑡𝑠(𝑄𝑟(𝑎𝑖))

There are a number of classical algorithms for searching frequent item sets which 
used for generating rules such as Apriori, FP-growth, Eclat. One important difference 
between these algorithms is a method of data representation. Basically there are two 
approaches—horizontal and vertical representation. In the vertical representation 
it’s necessary to have lists of fragments that match elements of a rule. In the horizon-
tal representation each fragment corresponds to a set of rule elements. Vertical repre-
sentation is more practical in case of the fragment model. In this context, it is possible 
to apply one of the known algorithms — Eclat [11]. Especially because support of rules 
is determined by the intersection of sets of fragments.

Rules of the form 𝑄1 □1,1 𝑄2 □1,1 … □1,1 𝑄𝑛 are used for filtration. Searching of rules 
is based on a feature hierarchy. As elements of the hierarchy you may have parts 
of speech descriptors, single words, etc. Sequentially from the descriptor $Any (any 
word) a rule is expanding and specifying. A selection criterion is a degree of specific-
ity of rules and a minimal support threshold. The specificity of the rules increases 
depending on a number of elements and their place in the hierarchy. The more ele-
ments and the lower the place of elements in the hierarchy then specificity is higher. 
In this case, the rules are eliminated with support below a threshold. As a result, every 
aspect is associated with set of rules. In such a way, filtration is done when there are 
only those candidate-aspects which match at least one rule.
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3.	 Evaluation

3.1.	Twitter sentiment classification

Used for teaching training set consisting of 3,846 tweets of telecommunications 
companies. Each company which was mentioned on Twitter rated on a scale {−1, 0, 1}.

Test set consists of 5,322 tweets about telecommunications companies. The objec-
tive of the testing was to include every mention of the company to one of three classes: 
positive, negative or neutral. Indicators macro 𝐹-measure and micro 𝐹-measure used 
to assess the quality. Test results are shown in Table 1. The table shows the best 
method, Baseline and 5 runs:

9_1  �Bayesian classifier based on a mixture of multivariate normal distributions 
(gmm),

9_2  classifier k-nearest neighbours (knn),
9_3  Bayesian classifier based on the distribution of von Mises-Fisher (vmfs),
9_4  centroid classifier Roccio (roccio),
9_5  classifier based on support vector machines (svm).

Baseline refers all tweets to the most frequent class, in this case a negative. Used 
for teaching training set consisting of 3,846 tweets of telecommunications compa-
nies. Each company which was mentioned on Twitter rated on a scale {−1, 0, 1}.

Indicators macro 𝐹-measure and micro 𝐹-measure used to assess the quality [5].

Table 1. Evaluation of the quality of sentiment classification tweets

Algorithm Macro 𝑭-measure Micro 𝑭-measure

9_1 (gmm) 0,3158 0,3331
9_2 (knn) 0,2328 0,2626
9_3 (vmfs) 0,3305 0,3371

9_4 (roccio) 0,3310 0,3501
9_5 (svm) 0,3527 0,3765
Baseline 0,1823 0,3370

2_B 0,4829 0,5362

Evaluating the quality of classification are at Baseline micro 𝐹-measure and sub-
stantially higher macro 𝐹-measure. This can be explained feature Baseline and calcu-
lation rule micro and macro 𝐹-measure. Macro 𝐹-measure — is the average amount 
of standard 𝐹-measure that calculated separately for the three classes. Baseline algo-
rithm has zero 𝐹-measure for two classes (positive and neutral), but 𝐹-measure nega-
tive class has a value of about 55%. By averaging the three classes 𝐹-measure is found 
to be 18%.Our algorithm solves these problems. The algorithm based on support 
vector machines shown best quality. The algorithm based on k-nearest neighbours 
showed the worst result. As we can see our result are comparable with result of other 
participants.
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3.2.	Explicit aspect extraction

Performance evaluation was made against the training set (gold standard), pro-
vided by organizers. The set consists of 202 annotated reviews in Russian. We used 
standard measures: precision, recall and F-measure. In official results the method 
based on multiple operation OR with maximizing reduction has identifier — 11.1.

Table 2. Evaluation results for explicit aspect extraction

Method

Strong demands Weak demands

P R F1 P R F1

OR 49% 71% 58% 59% 72% 65%
Multiple operation OR with 
maximizing reduction [11.1]

51% 73% 60% 61% 74% 66%

Rule-basedfiltration 60% 64% 62% 66% 69% 67%
Baseline 55% 69% 61% 65% 70% 67%
[2.1] The best result/strong 72% 57% 63% 81% 62% 69%
[4.1] The best result/weak 55% 69% 61% 69% 79% 73%

In general, participants in the official track had comparable results. It turns out that 
the approach based on transferring aspects from the train set to the test set with nor-
malization shows the same results as approaches used sophisticated models for training.

The results show that the modification of multiple OR operation generally con-
tributes to the performance. It can be argued that maximizing reduction showed an ad-
vantage compared to minimizing reduction when there are only those fragments that 
contain no other. This reduction is applied in solving text classification tasks and offers 
advantages in terms of speed of execution of classification rules. In the future, different 
types of reduction can take the form of individual operations instead of using in default.

Application of rules in filtration also has a positive effect on the result, but there 
are a number of issues that require further study. Along with increasing precision 
recall decreases. To solve this problem it is advisable to consider other criteria of rule 
selection to find suitable experimental values of boundary parameters for rule speci-
ficity and support of candidate-aspects to achieve a minimum reduction of recall.

4.	 Conclusions and Future work

The paper deals with approaches to explicit aspect extraction and sentiment 
classification. The algorithm based on support vector machines shown best quality. 
The algorithm based on k-nearest neighbours showed the worst result. The results are 
at the level of the average results presented in sentiment analysis track. The algorithm 
based on SVM using as features normalized lemma and syntactic links shown the 
best results on the track. In the efforts to extract the aspects we can say that the sim-
plest approach shows comparable with the rest of the results. The use of filtering rules 
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to improve the accuracy while reducing completeness. In this regard, it is necessary 
to separately evaluate the effect of boundary parameters on the result.

As our future work, we can point out such directions as: applying semi-super-
vised methods for rule generation to reduce the labor cost, using active learning meth-
ods, constructing a visualization system for rule generation, which can provide the 
interaction process with experts. Also expanding of the fragment rule model can give 
new expressive possibilities.
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